學術論文: |
近五年作為第一/通訊作者在Composites Part B: Engineering (IF=13.1), Carbon (IF=10.9), International Journal of Extreme Manufacturing (IF=14.7), Composites Part A: Applied Science and Manufacturing 等國際期刊上發表SCI中科院分區一區以上論文40篇,其中影響因子大于10的SCI論文6篇,ESI高被引論文3篇,成果如下(*通訊作者): 2023年 [1] T.-S. Liu, F. Qiu*, H.-Y. Yang*, S. Liu, Q.-C. Jiang, L.-C. Zhang*, Exploring the potential of FSW-ed Al–Zn–Mg–Cu-based composite reinforced by trace in-situ nanoparticles in manufacturing workpiece with customizable size and high mechanical performances, Composites Part B: Engineering (2023) 110425. [2] C.-D. Li, F. Qiu, H.-Y. Yang*, F. Chang, T.-Y. Li, H. Zhang, Q.-C. Jiang, Role and mechanism of innovative addition process of trace nano-TiCp in microstructure manipulation and significant mechanical properties enhancement of H13 steels, Journal of Materials Processing Technology 311 (2023) 117819. [3] T.-J. Miao, S.-Y. Zhang, F. Qiu*, H.-Y. Yang*, T.-S. Liu, S.-L. Shu*, T.-T. Duan, Q.-C. Jiang, Friction stir welding of high strength and toughness cast Al-Si7-Cu4-Mg0.3 alloys manipulated by in-situ nanocrystals, Journal of Materials Processing Technology 118221 (2023) 322. [4] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, B.-X. Dong, S.-L. Shu, L.-Y. Chen, F. Qiu, L.-C. Zhang*, Manipulating interface bonding and microstructure via tuning interfacial reaction for enhancing mechanical property of in-situ TiC/Al cermets, Journal of Materials Processing Technology 317 (2023) 117995. [5] X.-Y. Song, Y.-J. Wang, J.-X. Zhang, D.-A. Du, H.-Y. Yang*, L. Zhao, F. Peng*, X. Li*, F. Qiu, Microstructure and mechanical properties of aluminum alloy composites with endogenous nano-TiCp, Ceramics International 49 (2023) 6923–6931. [6] X.-D. Ma, H.-Y. Yang*, B.-X. Dong, S.-L. Shu, Z. Wang, Y. Shao, Q.-C. Jiang, F. Qiu*, Novel method to achieve synergetic strength–ductility improvement of Al–Cu alloy by in situ TiC–TiB2 particles via direct reaction synthesis, Materials Science and Engineering: A 869 (2023) 144810. [7] T.-S. Liu, F. Qiu*, H.-Y. Yang*, S.-L. Shu, J.-F. Xie, Q.-C. Jiang, L.-C. Zhang, Insights into the influences of nanoparticles on microstructure evolution mechanism and mechanical properties of friction-stir-welded Al 6061 alloys, Materials Science and Engineering: A 871 (2023) 144929. [8] Y.-F. Yan, X. Zhang, Y. Shao, H.-Y. Yang*, F. Qiu, S.-L. Shu, S.-Q. Kou*, Numerical modeling and failure evolution of microstructure-based in-situ TiB2 and TiC+TiB2 reinforced Cu matrix composites, Journal of Materials Research and Technology 24 (2023) 8606-8617. [9] Y.-F. Yan, S.-Q. Kou*, H.-Y. Yang*, Y. Shao, F. Qiu, S.-L. Shu, Synergistic optimization of mechanical and tribological properties of TiC modified copper-graphite composites by direct current in-situ sintering, Ceramics International 49(16) (2023) 27069-27078. [10] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, S.-L. Shu*, F. Qiu*, Q.-C. Jiang, L.-C. Zhang*, Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: preparation, performance, and mechanisms, International Journal of Extreme Manufacturing 5(3) (2023) 032006. [11] F. Chang, C.-D. Li, H.-Y. Yang*, F. Qiu, S.-L. Shu, L.-Y. Chen, Q.-C. Jiang, Hot-work die steel with superior mechanical properties at room and high temperatures prepared via a combined approach of composition design and nanoparticle modification, Journal of Materials Research and Technology 25 (2023) 1748-1760. [12] J.-R. Sun, B.-X. Dong, H.-Y. Yang*, S.-L. Shu, F. Qiu*, Q.-C. Jiang, L.-C. Zhang*, The Role of Lithium in the Aging Precipitation Process of Al-Zn-Mg-Cu Alloys and Its Effect on the Properties, Materials 16(13) (2023) 4750. [13] T.-S. Liu, B.-X. Dong*, H.-Y. Yang*, F. Qiu*, S.-L. Shu*, Q.-C. Jiang, Review on role of intermetallic and ceramic particles in recrystallization driving force and microstructure of wrought Al alloys, Journal of Materials Research and Technology 27 (2023) 3374–3395. [14] Z.-J. Bao, H.-Y. Yang*, B.-X. Dong, F. Chang, C.-D. Li, Y. Jiang, L.-Y. Chen, S.-L. Shu*, Q.-C. Jiang, F. Qiu*, Development Trend in Composition Optimization, Microstructure Manipulation, and Strengthening Methods of Die Steels under Lightweight and Integrated Die Casting, Materials 16 (2023) 6235. [15] S. Li, X. Yue, Q. Li, H. Peng, B. Dong, T. Liu, H. Yang*, J. Fan*, S. Shu*, F. Qiu*, Q. Jiang, Development and applications of aluminum alloys for aerospace industry, Journal of Materials Research and Technology 27 (2023) 944-983. [16] Yu‑Hang Chu, Liang‑Yu Chen*, Bo‑Yuan Qin, Wenbin Gao, Fanmin Shang, Hong‑Yu Yang*, Lina Zhang, Peng Qin, Lai‑Chang Zhang*, Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti–6Al–4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution, Acta Metallurgica Sinica (English Letters) (2023). [17] Y.-F. Yan, S.-Q. Kou*, H.-Y. Yang*, S.-L. Shu, F.-J. Shi, F. Qiu, Q.-C. Jiang, Microstructure-based simulation on the mechanical behavior of particle reinforced metal matrix composites with varying particle characteristics, Journal of Materials Research and Technology 26 (2023) 3629-3645. 2022年 [1] B.-X. Dong, Q. Li, H.-Y. Yang*, T.-S. Liu, F. Qiu*, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Synergistic optimization in solidification microstructure and mechanical performance of novel (TiCxNy−TiB2)p/Al nanocomposites: Design, tuning and mechanism, Composites Part A: Applied Science and Manufacturing 155 (2022) 106843. (高被引論文) [2] Jun-Nan Dai, Shu-Qing Kou, Hong-Yu Yang*, Zheng-Bo Xu, Shi-Li Shu, Feng Qiu, Qi-Chuan Jiang, L.-C. Zhang, High-content continuous carbon fibers reinforced PEEK matrix composite with ultra-high mechanical and wear performance at elevated temperature, Composite Structures 295 (2022) 115837. [3] S.-S. Li, F. Qiu, H.-Y. Yang*, S. Liu, T.-S. Liu, L.-Y. Chen, Q.-C. Jiang, Strengthening of dislocation and precipitation for high strength and toughness casting Al–Zn–Mg–Cu alloy via trace TiB2+TiC particles, Materials Science and Engineering: A 857 (2022) 144107. [4] T.-S. Liu, F. Qiu*, H.-Y. Yang*, C.-L. Tan, B.-X. Dong, J.-F. Xie, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Versatility of trace nano-TiC–TiB2 in collaborative control of solidification-rolling-welding microstructural evolution in Al–Mg–Si alloy for enhanced properties, Materials Science and Engineering: A 851 (2022) 143661. [5] Z.-B. Xu, S.-Q. Kou, H.-Y. Yang*, B.-X. Dong, Y. Han, L.-Y. Chen, F. Qiu, Q.-C. Jiang, The effect of carbon source and molar ratio in Fe–Ti–C system on the microstructure and mechanical properties of in situ TiC/Fe composites, Ceramics International 48 (2022) 30418–30429. [6] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, S.-L. Shu, J.-B. Lu, Effect mechanism of mono-particles or hybrid-particles on the thermophysical characteristics and mechanical properties of Cu matrix composites, Ceramics International 48 (2022) 23033–23043. [7] X.-Y. Yao, F. Qiu*, H.-Y. Yang*, S.-L. Shu, T.-T. Li, Q.-C. Jiang, Role of in-situ nanocrystalline in solidification behaviors manipulation, microstructure refinement, and mechanical properties enhancement of Al-Cu4/Al-Mg1 alloys, Materials Characterization 194 (2022) 112408. [8] F. Zhang, F.-J. Shi, B.-X. Dong*, H.-Y. Yang*, Effect of Ta, Nb and Zr additions on the microstructures and mechanical properties of 70vol% TiC/Al cermets, Ceramics International 48(21) (2022) 32479-32490. [9] H. Zhang, F. Qiu*, H.-Y. Yang*, W.-X. Wang, S.-L. Shu, Q.-C. Jiang, Microstructure manipulation mechanism and mechanical properties improvement of H13 steel via trace nano-(TiC+TiB2) particles, Materials Characterization 188 (2022) 111924. 2021年: [1] Yang H-Y, Yan Y-F, Liu T-S, Dong B-X, Chen L-Y, Shu S-L, et al. Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Composites Part B: Engineering. 2021; 225: 109265. (IF=11.322) [2] Yang H-Y, Wang Z, Chen L-Y, Shu S-L, Qiu F, Zhang L-C. Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites Part B: Engineering. 2021; 209: 108605. (高被引論文) [3] Dong B-X, Li Q, Wang Z-F, Liu T-S, Yang H-Y*, Shu S-L, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Composites Part B: Engineering 2021; 217: 108912. (高被引論文) [4] Liu T-S, Qiu F, Dong B-X, Geng R, Zha M, Yang H-Y*, et al. Role of Trace Nanoparticles in Establishing Fully Optimized Microstructure Configuration of Cold-rolled Al Alloy. Materials & Design. 2021; 206: 109743. [5] Dong BX, Ma XD, Liu TS, Li Q, Yang HY*, Shu SL, Zhang BQ, Qiu F*, et al. Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles. Journal of the American Ceramic Society. 2021; 104(6): 2820-2835. [6] Qiu F, Zhang H, Li C-L, Wang Z-F, Chang F, Yang H-Y*, et al. Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Materials Science & Engineering A. 2021; 819: 141485. [7] Zhu L, Qiu F*, Zou Q, Han X, Shu S-L, Yang H-Y*, et al. Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science and Engineering: A. 2021; 802: 140627. [8] Yang H-Y, Cai Z-J, Zhang Q, Shao Y, Dong B-X, Xuan Q-Q, et al. Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50 vol% TiB2/Al composites. Ceramics International. 2021;47(15):22121-9. [9] S.-Q. Kou, Y.-L. Gao, W. Song, H.-L. Zhao, Y.-B. Guo, S. Zhang*, H.-Y. Yang*, Compression properties and work-hardening behavior of the NiAl matrix composite reinforced with in situ TaC ceramic particulates, Vacuum (2021) 110035. [10] Q. Lin*, L. Liu, H. Yang*, L. Li, Wetting of SiC by molten Cu–20Me–2Cr (Me=Ag, Mn, Si, and Sn) alloys at 1373 K, Vacuum 185 (2021) 110002. [11] Xie K, Ge Y, Shi Y, Yang H*, Lin Q*. Wetting of silica and 304 stainless steel by SnO-P2O5-ZnO glass at 500–600 °C. Materials Today Communications. 2021;26:102103. 2020年: [1] Yang HY, Wang Z, Yue X, Ji PJ, Shu SL. Simultaneously improved strength and toughness of in situ bi-phased TiB2–Ti(C,N)–Ni cermets by Mo addition. Journal of Alloys and Compounds. 2020;820:153068. [2] Lin Q*, Yang F, Yang H-Y*, Sui R, Shi Y, Wang J. Wetting of graphite by molten Cu–xSn–yCr ternary alloys at 1373 K. Carbon. 2020; 159: 561-569. [3] Yang H-Y, Yue X, Wang Z, Shao Y, Shu S. Strengthening mechanism of TiC/Al composites using Al-Ti-C/CNTs with doping alloying elements (Mg, Zn and Cu). Journal of Materials Research and Technology. 2020;9(3):6475-87. [4] Li Q, Qiu F*, Dong B-X, Yang H-Y*, Shu S-L, Zha M, et al. Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys. Materials Science and Engineering: A. 2020; 798: 140247. [5] Li T-T, Yang H-Y*, Miao T-J, Peng H-L, Chen X, Zhu L, Duan T-T, Qiu F*, et al. Microstructure refinement and strengthening of Al–Cu alloys manipulated by nanocrystalline phases formed by in situ crystallization of Ni–Nb–Ti metallic glasses in melt. Journal of Materials Research and Technology. 2020; 9(3): 4494-4505. [6] Liu S, Zhang X, Peng H-L, Han X, Yang H-Y*, Li T-T, Zhu L, Zhang S, Qiu F*, et al. In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al-Si alloys by Zr-based amorphous alloys. Journal of Materials Research and Technology. 2020;9(3):4644-4654. [7] X. Han, Z. Zhang, Y. Rong, S.J. Thrush, G.C. Barber, H. Yang*, F. Qiu*, Bainite kinetic transformation of austempered AISI 6150 steel, Journal of Materials Research and Technology 9(2) (2020) 1357-1364. [8] X. Han, Z. Zhang, Y. Pan, G.C. Barber, H. Yang*, F. Qiu*, Sliding Wear Behavior of Laser Surface Hardened Austempered Ductile Iron, Journal of Materials Research and Technology 9 (2020) 14609-14618. [9] X. Han, Z. Zhang, J. Hou, S.J. Thrush, G.C. Barber, Q. Zou, H. Yang*, F. Qiu*, Tribological behavior of heat treated AISI 6150 steel, Journal of Materials Research and Technology 9(6) (2020) 12293-12307. [10] Yang H-Y, Wang Z, Shu S-L, Lu J-B. Effect of Ta addition on the microstructures and mechanical properties of in situ bi-phase (TiB2-TiCxNy)/(Ni-Ta) cermets. Ceramics International. 2019;45(4):4408-17. |
授權專利: |
1. 寇淑清, 徐政博, 楊宏宇, 邱豐. 一種MXene石墨烯協同強化高含量碳纖維增強PEEK基複合材料及其制備方法. 中國發明專利,ZL202210236366.3, 授權日期: 2023.03.28. 2.楊宏宇, 劉林, 邱豐, 舒世立, 陳靓瑜, 邵勇, 石鳳健. 原位内生納米(TiC-Al3Ti)/Al多孔複合材料及其制備方法. 中國發明專利, ZL201811609107.0, 授權日期: 2021.01.05. 3.楊宏宇, 劉林, 邱豐, 舒世立, 陳靓瑜, 邵勇, 黃忠富. 納米碳管和納米TiC混雜增強鋁基複合材料及其制備方法. 中國發明專利, ZL201811609884.5, 授權日期: 2021.06.01. 4.Qiu Feng, Dong Baixin, Yang Hongyu, Jiang Qichuan. Metodo per pre-dispersione di nanoparticelle in pacchetti per favorire una dispersione uniforme in fusion. Ufficio Italiano Brevetti, N. 102019000025423, 2021.12.16. 5.Qiu Feng, Liu Tianshu, Zhao Jianrong, Yang Hongyu, Jiang Qichuan. Metodo per la preparazione del foglio di rotolamento bidirezionale a controllo verticale di rotolamento TiC rinforzata con lega Al-Cu-Mg. Ufficio Italiano Brevetti, N. 102019000025429, 2021.12.27. 6.邱豐, 佟昊天, 楊宏宇, 舒世立. 一種多相陶瓷顆粒混雜制備高彈性模量高強度鋁合金的方法. 中國發明專利, ZL201811607758.6,授權日期: 2021.02.12. 7.邱豐, 董柏欣, 楊宏宇, 姜啟川. 一種基于内生納米TiCxNy顆粒的陶鋁複合材料的制備方法. 中國發明專利, ZL 201811608113.4, 授權日期: 2020.05.22. 8.邱豐, 佟昊天, 楊宏宇, 舒世立. 一種多尺度陶瓷顆粒混雜高彈性模量高強度鋁合金及其制備方法. 中國發明專利, ZL201811608130.8, 授權日期: 2020.03.20. 9.邱豐, 劉天舒, 楊宏宇, 姜啟川. 一種微量微納米混雜顆粒增強Al-Cu-Mg-Si闆材控軋制備方法. 中國發明專利, ZL201811607792.3, 授權日期: 2020.03.20. 10.邱豐, 佟昊天, 姜啟川, 楊宏宇. 一種雙尺度陶瓷顆粒混雜高彈性模量高強度鋁合金及其制備方法. 中國發明專利, ZL201811608128.0, 授權日期: 2020.03.20. 11.邱豐, 李強, 楊宏宇, 姜啟川. 一種基于多相混雜尺度陶瓷顆粒強化劑強化鋁矽合金的方法. 中國發明專利, ZL201811607770.7, 授權日期: 2020.07.03. 12.邱豐; 劉天舒; 趙建融; 楊宏宇. 熔體内原位微納米顆粒強化Al-Cu-Mg-Si合金闆材的制備方法,中國發明專利,ZL201811607452.0,授權日期: 2020.05.08. 13.邱豐, 董柏欣, 姜啟川, 楊宏宇. 一種小包内納米顆粒預分散輔助熔體内均勻分散的方法. 中國發明專利, ZL201811607801.9, 授權日期: 2019.9.10. 14.邱豐, 劉天舒, 趙建融, 姜啟川, 楊宏宇. 一種雙向垂直控軋微量TiC增強Al-Cu-Mg合金闆材的制備方法. 中國發明專利, ZL201811607780.0, 授權日期: 2019.10.22. 15.邵勇, 郭平義, 周應國, 楊宏宇, 黃忠富. 一種空心凸齒類鍛件的成形方法. 中國發明專利, ZL 201610383398.0, 授權日期: 2017.10.27. |