王國勇
職稱:教授
電話:13125800621
郵箱:materwanggy@jlu.edu.cn
➢ 受教育經曆:(從大學本科開始,按時間倒排序)
2006/09–2009/12,伟德bv1946官网,伟德bv1946,博士
2004/09–2006/06,伟德bv1946官网,伟德bv1946,碩士
2000/09–2004/06,伟德bv1946官网,伟德bv1946,學士
➢ 研究工作經曆:(按時間倒排序)
2018/9–至今,伟德bv1946官网,伟德bv1946,教授
2012/3–2018/9,伟德bv1946官网,伟德bv1946,副教授
2009/12–2012/3,香港科技大學,機械與航空工程系,博士後
2004/09–2009/12,伟德bv1946官网,伟德bv1946,研究生
➢ 研究方向
超級電容器和锂離子電池;自清潔表面與油水分離;金屬材料力學性能
➢ 主持項目情況
1. 國家自然科學基金青年基金,51401083,納米晶金屬室溫自回複性研究,2015/01-2017/12,25萬元,已結題,主持
2. 吉林省科技計劃項目自然科學基金,20180101071JC,高能量密度、高功率密度氧化钴基儲能電極材料的研究,2018/01-2020/12,15萬元,在研,主持
3. 國家自然科學基金國際(地區)⏭➰與交流項目,51761135110,仿蜘蛛絲結構的油水分離中微油滴聚集效應,2018/01-2020/12,180萬元,在研,骨幹
4. 西安交通大學金屬材料強度國家重點實驗室開放課題,20141609,納米晶金屬的微觀塑性變形機制及力學性能的研究,2014/05-2016/05,5萬元,已結題,主持
5. 伟德bv1946官网汽車材料教育部重點實驗室開放課題,14-450060501456,納米晶粒在應力和熱場作用下的穩定性,2014/03-2014/12,5萬元,已結題,主持
6. 伟德bv1946官网引進人才(學術骨幹),2012年,44萬元,在研,主持
7. 伟德bv1946官网優青培育,2015年,10萬元,在研,主持
8. 溫州市龍灣科技發展計劃項目,2014YG09,基于高效半導體激光器的模具激光強化及修複技術開發,2013/05-2015/03,20萬元,已結題,主持
9. 國家自然科學基金面上項目,51371089,納米晶金屬卸載塑性變形行為及其機制的研究,2014/01-2017/12,80萬元,已結題,骨幹
➢ 論文發表情況
共發表第一/通訊作者論文24篇,一篇論文曾入選ESI高被引論文。 IF>8的文章5篇 (2篇Journal of Materials Chemistry A, 3篇ACS Applied Materials & Interfaces),8>IF>3的7篇 (2篇Scientific Reports,1篇Journal of Colloid and Interface Science,1篇Electrochimica Acta,2篇Materials Science and Engineering A,1篇RSC Advances),3>IF>1的9篇 (3篇Journal of Applied Physics, 1篇ChemPlusChem,3篇Journal of Materials Research,1篇Advanced Engineering Materials,1篇Journal of Materials Engineering and Performance)。⏭➰文章9篇,分别發表于Acta Materialia、Journal of the Mechanics and Physics of Solids、Chemical Engineering Journal等雜志上。論文共獲得包括Reviews on Advanced Materrials Science總編輯,Materials Physics and Mechanics主編Ilya Ovid'ko和英國皇家工程院院士,歐洲科學院院士,俄羅斯科學院外籍院士T.G. Langdon等SCI正面引用400餘次,H因子12。詳細列表如下:
[1] W. Zhou, S. Li, Y. Liu, Z. Xu, S. Wei, G.Y. Wang*, J. Lian, Q. Jiang, A Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High-flux, High-efficiency and Continuous Oil-Water Separation, ACS Applied Materials & Interfaces 10 (2018) 9841-9848.
[2] L. Wu, X. Leng, Y. Liu, S. Wei, C. Li, G. Wang*, J. Lian, Q. Jiang, A. Nie, T.-Y. Zhang, A Strategy for Synthesis of Nanosheets Consisting of Alternating Spinel Li4Ti5O12 and Rutile TiO2 Lamellas for High-Rate Anodes of Lithium-Ion Batteries, ACS Applied Materials & Interfaces 9(5) (2017) 4649-4657.
[3] G. Wang*, X. Leng, S. Han, Y. Shao, S. Wei, Y. Liu*, J. Lian, Q. Jiang, How to improve the stability and rate performance of lithium-ion batteries with transition metal oxide anodes, Journal of Materials Research 32(1) (2017) 16-36.
[4] X.-S. Yang, Y.-J. Wang, H.-R. Zhai, G.-Y. Wang, Y.-J. Su, L.H. Dai, S. Ogata, T.-Y. Zhang*, Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations, Journal of the Mechanics and Physics of Solids 94 (2016) 191-206.
[5] X.-S. Yang, Y.-J. Wang, G.-Y. Wang, H.-R. Zhai, L.H. Dai, T.-Y. Zhang*, Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations, Acta Materialia 108 (2016) 252-263.
[6] G. Wang, S. Liu, S. Wei, Y. Liu, J. Lian, Q. Jiang, Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity, Scientific Reports 6 (2016) 20933.
[7] Y. Liu, W. Yao, G. Wang, Y. Wang, A.S. Moita, Z. Han, L. Ren, Reversibly switchable wettability on aluminum alloy substrate corresponding to different pH droplet and its corrosion resistance, Chemical Engineering Journal 303 (2016) 565-574.
[8] X. Leng, L. Wu, Y. Liu, C. Li, S. Wei, Z. Jiang, G. Wang*, J. Lian, Q. Jiang, A novel open architecture built by ultra-fine single-crystal Co2(CO3)(OH)2 nanowires and reduced graphene oxide for asymmetric supercapacitors, Journal of Materials Chemistry A 4(43) (2016) 17171-17179.
[9] X. Leng, Y. Shao, L. Wu, S. Wei, Z. Jiang, G. Wang*, Q. Jiang, J. Lian, A unique porous architecture built by ultrathin wrinkled NiCoO2/rGO/NiCoO2 sandwich nanosheets for pseudocapacitance and Li ion storage, Journal of Materials Chemistry A 4(26) (2016) 10304-10313.
[10] X. Leng, X. Ding, J. Hu, S. Wei, Z. Jiang, J. Lian, G. Wang*, Q. Jiang, J. Liu, In situ prepared reduced graphene oxide/CoO nanowires mutually-supporting porous structure with enhanced lithium storage performance, Electrochimica Acta 190 (2016) 276-284.
[11] X. Wang, J. Hu, W. Liu, G. Wang, J. An, J. Lian*, Ni-Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance, Journal of Materials Chemistry A 3(46) (2015) 23333-23344.
[12] J.A. Liu, F.J. Si, D. Li, Y. Liu, Z. Cao, G.Y. Wang, EFFECT OF BATH pH ON ELECTROLESS Ni-P COATING DEPOSITED ON OPEN-CELL ALUMINUM FOAMS, Surface Review and Letters 22(6) (2015) 12.
[13] X.N. Leng, S.F. Wei, Z.H. Jiang, J.S. Lian, G.Y. Wang*, Q. Jiang, Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance, Scientific Reports 5 (2015) 11.
[14] X. Leng, Y. Shao, S. Wei, Z. Jiang, J. Lian, G. Wang*, Q. Jiang, Ultrathin Mesoporous NiCo2O4 Nanosheet Networks as High-Performance Anodes for Lithium Storage, ChemPlusChem 80(12) (2015) 1725-1731.
[15] J.J. Hu, X.P. Zhang, G.X. Sun, G.Y. Wang*, Deformation mechanism of an electric brush-plated nanocrystalline Cu investigated by tensile testing and nanoindentation creep, Materials Research Innovations 19 (2015) S181-S186.
[16] J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, J. Zhang, J. Lian, Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni, Journal of Alloys and Compounds 647 (2015) 670-680.
[17] G. Wang, J. Lian, Q. Jiang, S. Sun, T.-Y. Zhang, High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold, Journal of Applied Physics 116(10) (2014) 103518.
[18] G. Wang, J. Lian, Dislocation Evolution in Nanograins during Successive Stress Relaxation, Advanced Engineering Materials 16(4) (2014) 413-420.
[19] S. Sun, S. Wei*, G. Wang*, Z. Jiang, J. Lian, C. Ji, The Synthesis and Electrochemical Behavior of High-Nitrogen Nickel-Free Austenitic Stainless Steel, J. of Materi Eng and Perform 23(11) (2014) 3957-3962.
[20] J. Jiang, G. Bi, G. Wang, Q. Jiang, J. Lian, Z. Jiang, Strain-hardening and warm deformation behaviors of extruded Mg–Sn–Yb alloy sheet, Journal of Magnesium and Alloys 2(2) (2014) 116-123.
[21] J. Hu, S. Han, G. Sun, S. Sun, Z. Jiang, G. Wang*, J. Lian, Effect of strain rate on tensile properties of electric brush-plated nanocrystalline copper, Materials Science and Engineering: A 618(0) (2014) 621-628.
[22] S. Han, L. Zhao, G. Wang, J. Lian, Revealing the intrinsic dislocation storage capability in nanocrystalline nickel, Materials Letters 127(0) (2014) 20-23.
[23] G.Y. Wang, J.S. Lian, T.Y. Zhang, High resolution transmission electron microscopy in situ investigation into the spontaneous coalescence of gold nanoparticles at room temperature, Rsc Advances 3(46) (2013) 24017-24020.
[24] G.Y. Wang, T.Y. Zhang, Easy Route to the Wettability Cycling of Copper Surface between Superhydrophobicity and Superhydrophilicity, Acs Applied Materials & Interfaces 4(1) (2012) 273-279.
[25] G.Y. Wang, T.Y. Zhang, Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface, Journal of Colloid and Interface Science 377 (2012) 438-441.
[26] G.Y. Wang, G.Y. Li, L. Zhao, J.S. Lian, Z.H. Jiang, Q. Jiang, The origin of the ultrahigh strength and good ductility in nanotwinned copper, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(16-17) (2010) 4270-4274.
[27] G.Y. Wang, Z.H. Jiang, J.S. Lian, ENHANCED TENSILE DUCTILITY IN AN ELECTRODEPOSITED CU WITH NANO-SIZED GROWTH TWINS, International Journal of Modern Physics B 24(15-16) (2010) 2537-2542.
[28] G. Wang, J. Lian, Q. Jiang, The effect of grain size and strain rate on the tensile ductility of bulk nanostructured metals and alloys, Materials Science Forum 633-634 (2010) 393-410.
[29] L.Y. Qin, J.S. Lian, Z.H. Jiang, G.Y. Wang, Q. Jiang, Dual-phase nanocrystalline Ni-Co alloy with high strength and enhanced ductility, Journal of Materials Research 25(2) (2010) 401-405.
[30] G.Y. Wang, J.S. Lian, Z.H. Jiang, L.Y. Qin, Q. Jiang, Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature, Journal of Applied Physics 106(8) (2009) 086105.
[31] G.Y. Wang, Z.H. Jiang, J.S. Lian, Q. Jiang, The grain refinement mechanism of electrodeposited copper, Journal of Materials Research 24(10) (2009) 3226-3236.
[32] G.Y. Wang, Z.H. Jiang, H.Z. Zhang, J.S. Lian, Enhanced tensile ductility in an electrodeposited nanocrystalline copper, Journal of Materials Research 23(8) (2008) 2238-2244.
[33] G.Y. Wang, Z.H. Jiang, Q. Jiang, J.S. Lian, Mechanical behavior of an electrodeposited nanostructured Cu with a mixture of nanocrystalline grains and nanoscale growth twins in submicrometer grains, Journal of Applied Physics 104(8) (2008) 084305.